TEXAS Adversarial Attacks Applied to Whale-Detecting Neural Network

The University of Texas at Austin

Background

- Modern neural networks tend to be

susceptible to adversarial attacks.

- Adversarial attack: a small, targeted
disruption to an input image that causes a
model to misclassity the image

- Adversarial attacks could cause real-world

damage as important technology begins to

rely on machine learning.
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Dataset: 30,000 2-second

audio clips from ocean buoys
run by Cornell University

Objective

- Create a neural network that can distinguish
North Atlantic right whale calls from ocean
noise and other whale calls

- Discover vulnerabilities in the model through

white-box and black-box attacks
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Attack

White Box Attacks: unrestricted access to model
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Fast Gradient Sign
Method (FGSM)

- Calculates model gradient on
image

- Steps 1n the opposite
direction by a constant ¢

- Computationally cheap, but
noticeable

Prediction: 1

Carlini and Wagner
(CW)

- Searches for smallest change
to image that causes
misclassification

- 1000 steps taken

- Computationally expensive,
but more etfective and less
noticeable
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Confidence: 67.14% |

Deeplool

- Finds nearest hyperplane

- Calculates the changes
needed to cross the
hyperplane

- Hyperplane: a high-
dimensional ‘line’ separating
different classifications

- Efficient and subtle
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Perturbation

Black Box Attacks: Only given access to a model’s final decision and certainty

Prediction: 1

Square

- Changes a random square of
pixels

- Tests for reduced certainty
in model

- Repeats until successtul
misclassification

- “Guess and check”

Confidence: 86.13% | Correct

Multiplied By .02

Perturbed Image
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Confidence: 76.42% | Incorrect
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- Performs white-box attacks
on bloodhound model
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Conclusion

Image-recognition CNNss can be
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accurately used for sound classification
White and black box attacks succeeded in
reducing accuracy below random chance
Decision borders are cloudy due to small

Results

100

o
S

N
-

N
-

\®)
S

2
N
\ 0 O ’ O
%O&\ 2 fo// . é\@// @6(? -
KSR Q
NG Y S
© < <
B Blooodhound Model B Target Model

93

91 93

dataset

Bootstrap dataset to train generalization
Create realistic attacks that perturb
original sound samples

Expand network to detect and identity
animal calls and human activity
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